Common Uses =========== Create locally and use remotely ------------------------------- .. todo:: Add content. Working with Data ----------------- .. todo:: Add content. Jupyter Notebook ---------------- This example demonstrates how to build and run an image with Jupyter Notebook. .. note:: When you exit a Docker image, any files you created in that image are lost. So if you create Jupyter Notebooks while in a Docker image, remember to save them to a mounted directory. Otherwise, the notebooks will be deleted (and unrecoverable) after you exit the Docker image. .. code-block:: bash neurodocker generate docker \ --pkg-manager apt \ --base-image debian:bullseye-slim \ --miniconda \ version=latest \ conda_install="matplotlib notebook numpy pandas seaborn" \ --user nonroot \ --workdir /work \ > notebook.Dockerfile # Build the image. docker build --tag notebook --file notebook.Dockerfile . # Run the image. The current directory is mounted to the working directory of the # Docker image, so our notebooks are saved to the current directory. docker run --rm -it \ --publish 8888:8888 \ --volume $(pwd):/work notebook \ jupyter-notebook --no-browser --ip 0.0.0.0 Multiple Conda Environments --------------------------- This example demonstrates how to create a Docker image with multiple conda environments. .. literalinclude:: common_uses/conda_multiple_env.txt One can use the image in the following way: .. code-block:: bash docker run --rm -it multi-conda-env bash # Pandas is installed in envA. conda activate envA python -c "import pandas" # Scipy is installed in envB. conda activate envB python -c "import scipy"